



Abstract— The following paper discusses the methodology

behind modeling financial systems through deep learning neural

networks. The goal, utilize deep learning to optimize portfolio

returns by analyzing time series patterns. Concepts from prior

works include advanced feature abstraction techniques such as

factor analysis and Principal Component Analysis. New

concepts introduced in the paper include network performance

optimize strategies, an introduction to relativistic systems and a

universal system for scalable deep learning neural network

designs with built-in feature derivation. The primary application

of the machine learning techniques covered in the following

paper will utilize financial datasets provided by the Bloomberg

terminal and various other reputable sources outlined in section

model overview: source outline

I. INTRODUCTION

With the onset of affordable high-performance computing.

neural networks provide the opportunity for financial firms to

utilize information in a way they never thought possible. By

combining human intuition with network analytics market

analysis has made once qualitative analytics quantitative.

In the following section, we will review the history of

financial analysis and where it is headed. Prior to affordable

high-performance computing. Financial analysis was divided

into two categories, quantitative and qualitative analysis.

Quantitative finance gained popularity with the onset of

Operations Research.

Operations Research was first introduced during World

War II. Depending on the book you read the origins of

Operations Research is often debated among scholars.

Whether it be the British or American scientists one thing is

clear its purpose was to assess the utilization of war materials

based on science rather than wit9. After the war, Operations

Researched gained popularity in the civilian sector by

improving productivity and efficiency, adding a new

dimension to global markets9. It wasn’t long before the

finance industry caught on.

 In 1951, Peter Whittle revolutionized financial modeling

in his publication, Hypothesis Testing in Time Series

Analysis2. In his paper, Whittle debuted the revolutionary

concept of an autoregressive moving average. Setting in

motion what was to be a new era of financial analysis2. Nearly

three decades later Robert F. Engle1 took Peter Whittle’s idea

to the next level. Engle, in his renowned Nobel Prize winning

work, Autoregressive Conditional Heteroscedasticity with

Estimates of the Variance of United Kingdom Inflation in

1982 introduced Conditional Heteroscedasticity to the auto-

aggressive moving average1. The result, financial market

volatility could now model turbulent periods, followed by

relatively calm periods1. However, Engle and Whittle’s work

had one critical flaw they both utilized univariate analysis

which could not encapsulate the abstract economic factor

which governs financial markets.

 It wasn’t until the advent of affordable high-performance

computing; technology and human intuition could work

together to quantify what qualitative analysis generalized.

Recently, innovative machine learning techniques have

brought financial modeling into a new era. Several of the most

popularized techniques includes deep learning neural

networks, support vector machines, quadratic discriminant

analysis, and linear regression3. However, current machine

learning techniques a dialog between user and network. To

establish an effective channel of communication.

The communication I am referring to is comparable to how

we communicate with technology today. Whether we are

sending emails or buying items online we are communicating

with technology to attain an end goal. The Communication

between user and network enables a user to inform the

network, of the data you are giving it and how to handle it.

Effectively simplifying incredibly complex tasks.

For the remainder of the paper, the category of machine

learning we will be covering is supervised learning.

Supervised Learning consists of five main components:

inputs, preprocessing, features, network designs, and output

target prediction.

II. NETWORK METHODOLOGY

In the following section, we will introduce how to establish

an effective channel of communication between user and

network. The motivation, behind the implantation of dialog

between user and network, is to reduce human error, better

manage large network input data and optimization prediction

performance. To begin, let us first analyze the general outline

for feature abstraction. As shown in the diagram below we see

features are derived from preprocessed raw data.

Financial Market Modeling Through Deep Learning Neural

Networks and High-Dimensional Data Embedding

Alexander Geiger Department of Electrical and Microelectronic Engineering, Rochester Institute of

Technology, May 17, 2017

Figure 2.1

Derive

Features
Preprocessing Raw Data

Figure 2.2

Feature Terminology: Attribute Introduction

After the features have been derived they are sent to the neural

network to predict a target output. The connection between

features, layers and output predictions is critical to network

design, development, and optimality. When dealing with

high-dimensional datasets, allocating inputs to layers poses

major challenges. To overcome this obstacle both feature’s

and layers utilize attributes. An attribute is an organization

system which enables the user to inform the network what the

data is, how to handle the data, and where connections need

to be made.

 The result, an automated process for feature derivation, and

network connections. Attributes are comprised of properties,

which act as a labeling system allowing the network to

interpret, process, and allocate data throughout the network.

Effectively standardize input to layer, layer to layer, and layer

to output connection through Attribute Logic.

Attribute Logic allows individual network layers to accept

or reject an input feature based on their specific attribute

properties. The attribute properties of layers are inherited by

a pre-defined logic based network topology. Once a layer

receives an input feature it assimilates to the attributes.

Therefore, the layers develop attributes and are able to

connect with other layers, as input features did with them.

The result, a standardization of combining complex parallel

and series substructures in the design of deep learning

networks. Figure 2.1 demonstrates how attribute logic can be

utilized for network design.

Attribute Connection Outline

The Attribute is composed of five main properties that govern

Attribute Logic. They are defined as, Theme, Expression,

Group, Trait, and Feature. For user-defined features, only

two properties, group, and traits are utilized in network

design. For simplicity let us cover the user-defined feature

network attribute design process:

The group determines the origin of raw data. Whereas the

trait specifies how the data was derived. The shorthand

notation for defining attributes of only one group and one trait

is denoted as:

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 → {𝐺𝑟𝑜𝑢𝑝, 𝑇𝑟𝑎𝑖𝑡}

Likewise, the notation for defining attributes with multiple

traits → 𝑇𝑟𝑎𝑖𝑡1, 𝑇𝑟𝑎𝑖𝑡2 is written as,

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 → {𝐺𝑟𝑜𝑢𝑝, 𝑇𝑟𝑎𝑖𝑡1 𝑇𝑟𝑎𝑖𝑡2}

Where a space separates 𝑇𝑟𝑎𝑖𝑡1 and 𝑇𝑟𝑎𝑖𝑡2. Figure 2.2

demonstrates a simple example of how attribute logic can be

utilized to govern the connections between the input to layer,

layer to layer, and layer to output connections.

Attribute & Feature Automation

For complex networks which utilize automated feature

derivation techniques, all attribute properties are used.

Properties provide an effective means of data organization

and communicating between the network and user. To better

convey the development of the neural network design process

let us think of it as an assembly line process where data is

processed such that it can be fed into a network. The assembly

line process is composed of three stages: General

Preprocessing, Feature Derivation, and Architecture

Design.

The first stage General Preprocessing begins when key

information is abstracted from the raw input data variable

names. The abstracted information is then uploaded to the

attribute properties. After the attributes have been processed

normalization and transformation techniques preprocess the

data to optimize network performance.

Once the data has been pre-processed it is now ready to

undergo Feature Derivation. Feature Derivation starts when

the Macro analysis is applied to the various company

episodes. The episodes separate the company’s financial data

from one another allowing companies to be processed

independently and as a group. One of the problems of macro

analysis is the statistical calculations utilized in the process

produces a large quantity of data. To overcome the problem

high-dimensional data embedding is used to make the data’s

dimensionality more manageable. Once the macro analysis

has been applied, time series feature derivation techniques are

utilized to analyze data. For a more in-depth look at the

methodology of data pre-processing, feature extraction and

high-dimensional data embedding please refer to the

following section Feature Derivation and Methodology.

Lastly, once the attributes have been defined, data has been

pre-processed and features have been derived the architecture

design process can now begin. The data is then fed into the

network through attribute logic. Where the attributes define

the connections between the input to layer, layer to layer, and

layer to output connections.

{A, A}

{A, B}

{A, C}

{A, A C}

{A, B C}

{A, A B}

{A, A B C}

Input Neural Network Architecture

Entry Build Target Convergence

{A, A B C}

Attribute Based Network Design

Attribute

Group

Trait

Figure 2.3

Network Design Theory

In ordinary networks, a network is comprised of three

layers an input layer, a hidden layer, and an output layer.

When dealing with high-dimensional data a single input layer

can become problematic. In order to effectively handle high-

dimensional data, we discuss how the implementation of

attribute logic based topology is implemented to optimize

network performance.

To do this deep learning neural network architecture is

characterized by three stages which and two hierarchal

structures. The hierarchal structures named section and

subsection are the fundamental building blocks of the

network design process. The largest of the bunch sections act

as the fundamental building blocks of the stages. Sections are

comprised of subsections which intern hold layers filled with

neurons. The goal of using an intricate architecture is to

parallelized high-dimensional data through attributes to

govern data propagation.

The first stage, Entry, is a single and or multi-sectional

layer where features and layers make contact. Stage two,

Build, is multi-sectional, where layers form connections with

other layers. Lastly, stage three, Target Convergence, is a

single section comprised of one layer where all layers of the

last section’s subsection converge to a single layer to predict

a target output. The result, neurons are not subjected to high-

dimensional data limiting the risk of overfitting and

increasing GPU memory. The outline of stage integration into

network architecture is outlined in figure 2.4.

Layer Analysis & Neuron Topology

Now that we have effectively established the foundation of

how attribute logic is utilized in network architecture. Let us

now venture into the layer. A network layer is composed of

two key elements Neurons and Attributes.

Neuron connection and interaction with each other is critical

to network optimality. Therefore, neuron topology is used to

govern the connections between neurons. The main difference

between neuron and layer topology is layer topology is

organized. While the topology which governs how neurons

connect with one another is random as seen in figure 2.6.

Through the utilization of neuron topology and attributes,

it is now possible to, optimize the utilization of neurons and

automate preprocessing such that deep learning networks can

be built from intricate architecture designs like never before.

Through the introduction of layer based topology, we are now

able to plug high-dimensional data into a network with ease.

One of the biggest motivation for the utilization of automating

network connections is to allow for automation of feature

derivation and integration.

III. FEATURE DERIVATION METHODOLOGY

Feature derivation and macro analysis techniques. To do

this attributes act as the foundation for an interactive network

environment. Allowing user intuition to be combined with

robust advanced analytics providing a quantitative depth to

the user’s qualitative intuition. The structure for the

automated process is as follows:

4

After raw data is imported into the network environment

several Preprocessing techniques are to the data such as

transformations and normalization method were used.

Transformation Normalization

 For the transformation methods, a Sigmoid Heaviside

Laplacian transformation was utilized to filter outliers. The

transformation was comprised of three parts and used the

mean and standard deviation of the data. The first stage

utilized a 1-1 ratio until it passed a number of standard

deviations away from the mean, at which point it would jump

to stage two or three. Stage two and three utilized a sigmoid

function that would act as threshold such that the function

would never pass a specified number of standard deviations.

Section

Subsection

Layers

Stages

Neurons Attributes

Network Architecture Design

Figure 2.4

Layers

Neurons Attributes

Figure 2.5

Figure 2.6

Figure 3.1

Derive

Features
Preprocessing Raw Data

Micro Time Series Analysis

The micro analysis utilizes the preprocessed raw data to

derive features. The most popular features include simple

exponential smoothing, Holt’s exponential smoothing, the

generalized conditional heteroscedasticity model, stochastic

differential equations and other numerical methods such as

derivatives. In order to better understand the methods

discussed above let us analyze the equations and their

implementation.

First, exponential smoothing is one of the most common

methods utilized in financial forecasting. Equation 3.2 gives

us the simple exponential smoothing forecasting equation12:

𝐹𝑡 = 𝛼(1 − 𝐹𝑡) (3.1)

𝐹𝑡+1 = 𝛼𝐴𝑡 + (1 − 𝛼)𝐹𝑡 (3.2)

Where 𝐹𝑡+1 represents the forecasted expected returns of an

asset, and 𝛼 is the smoothing parameter or learning factor.

With regards to the learning factor 𝛼 in simple exponential

smoothing. We see the Q-Learning algorithm in equation 3.3

is very similar to simple exponential smoothing. However, in

Q-learning, the equation is based on a set of states 𝑠 and a set

of actions 𝑎.

 𝑄(𝑠, 𝑎) ← (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼[𝑠𝑎𝑚𝑝𝑙𝑒] (3.3)

Holt took simple exponential smoothing to the next level

when he modified it such that it could better handle trends.

equations 3.3 - 3.5 give us the Holts exponential smoothing

and forecasting equations11:

 𝐹𝑡+1 = 𝛼𝐴𝑡 + (1 − 𝛼)(𝐹𝑡 + 𝑇𝑡) (3.3)

 𝑇𝑡+1 = 𝛾(𝐹𝑡+1 − 𝐹𝑡) + (1 − 𝛾)𝑇𝑡 , 𝑇0 = 0 (3.4)

𝐻𝑡+𝑚 = 𝐹𝑡+1 + 𝑚𝑇𝑡+1 (3.5)

Let 𝐹𝑡+1 be the Level equation, T be the trend equation and

𝐻𝑡+𝑚 be the forecasting equation. Furthermore, let 𝛾 be the

smoothing factor or discount factor and 𝛼 be the smoothing

parameter of the Level equation 𝑇 or the learning factor11.

Please note Holts original publication in 1957 used different

equation notation. The notation has been translated to be more

modern11.

One of the biggest applications of the generalized

conditional heteroscedasticity model is assets volatility

prediction. Equation 3.6 gives us the Hull representation of

the generalized conditional heteroscedasticity model:

𝜎𝑛
2 = 𝛾𝑉𝐿 + 𝛼𝜇𝑛−1

2 + 𝛽𝜎𝑛−1
2 (3.6)

Let 𝛾 be your weighting factor to your long-term volatility 𝑉𝐿,

𝛼 be your weighting factor to your returns 𝜇, and 𝛽 be your

weighting factor on your variance. Lastly, 𝜎𝑛 is the volatility

in the market derived from the generalized conditional

heteroscedasticity model.

The last micro time series indicator we will be covering is the

stochastic differential equation. The stochastic differential

equation encapsulates the Holt exponential moving average

and the generalized conditional heteroscedasticity model.

Equation 3.6 gives us the stochastic equation defined as12:

 𝑑𝑠 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑥 (3.6)

Let 𝑆 be the price of the asset, 𝜇 be the drift coefficient defined

by the forecasted returns of asset S, 𝜎 be the diffusion

coefficient current volatility. Next, 𝑑𝑡 is defined as your time

differential and 𝑑𝑥 is defined as the stochastic probability

differential.

Macro Analysis

 Another key component to the feature derivation process

is Macro-analysis analytics. Macro-analysis utilizes several

different feature derivations techniques before undergoing the

micro analysis discussed above. These methods include

calculating z-scores, standard deviations and variance and

other statistical factor to help analyze economic data. Macro-

economic data has extracted been extracted across multiple

episodes. The data will then be compressed further via high-

dimensional data embedding techniques.

High-Dimensional Data Embedding

 The main method of high-dimensional data embedding

consists of factor analysis and principal component analysis.

In figure 3.2 factor analysis is utilized to embed indicator1 five

dimensions of data in a two-dimensional surface. How it

works is by calculating the maximum likelihood estimate of

the factor loadings. The equation for factor analysis is stated

in equation 3.7:

𝑥 = 𝜇 + Λ𝑓 + 𝑒 (3.7)

Let 𝑥 be a vector of observed variables, 𝜇 be a constant

vector of means, Λ be a matrix of factor loadings and 𝑒 be a

vector of specific independent factors. In order to ensure the

data embedding provided by the factor analysis is reliable.

Algorithms analyze the covariance matrix of that observed

data 𝑥. Equation 4.8 is used to calculate the covariance of 𝑥.

 𝑐𝑜𝑣(𝑥) = ΛΛ𝑇 + 𝑐𝑜𝑣(𝑒) (3.8)

When using factor analysis, one of the most critical elements

to is understanding is the difference between rotated and

unrotated data. Unrotated applies equal weights on all of your

variable components. Conversely, the weights of the variable

loadings can differ in rotated factor analysis. An example of

rotated factor analysis is represented in figure 3.2.

IV. PORTFOLIO OPTIMIZATION METHODS

The portfolio optimizing strategy utilizes a portfolio of two

assets and cash. The assets are derived from stocks by using

an inverse correlation coefficient maximization function.

Such that given assets 𝐴 and 𝐵:

𝑓𝑚𝑎𝑥 = −
𝑐𝑜𝑣(𝐴,𝐵)

𝜎𝐴𝜎𝑩
 (4.0)

 One the assets have been derived the next step is deciding on

how much is to be invested at the risk-free rate given when

given a maximum portfolio risk tolerance 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜.12 To

solve for the risk tolerance, we will utilize the risk tolerance

equation:

 (𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜)
2

= 𝑎1𝑥2 + 𝑎2𝑥𝑦 + 𝑎3𝑦2 (4.1)

Where the x and y represent the percentage of portfolio capital

allocated to the assets12. The three coefficients 𝑎1, 𝑎2 and 𝑎3

are defined by:

𝑎1 = (𝜎𝐴) 2 (4.2)

𝑎2 = 2𝜌𝐴𝐵𝜎𝐴𝜎𝐵 (4.3)

𝑎3 = (𝜎𝐵)2 (4.4)

Let 𝜇𝐴 be Assets A’s forecasted return, 𝜎𝐴 be A’s the

forecasted variance, 𝜇𝐵 be B’s forecasted return, 𝜎𝐵 be B’s

forecasted variance and 𝜌𝐴𝐵 be the correlation between assets

A and B. In order to solve for the portfolio capital allocation

of the assets. A maximization function is utilized to forecast

asset returns the portfolio12. We also introduce a new variable

𝑧 which represents the capital invested at the risk-free rate of

return.

𝑓𝑚𝑎𝑥 = 𝑟𝑧 + 𝜇1𝑥 + 𝜇2𝑦 (4.5)

1 = 𝑧 + 𝑥 + 𝑦 (4.6)

Combining the constraint equation, and the maximization

equation we are able to produce the following equation

which must be maximized12.

𝑓𝑚𝑎𝑥 = 𝑟(1 − 𝑥 − 𝑦) + 𝜇1𝑥 + 𝜇2𝑦 (4.7)

𝑓𝑚𝑎𝑥 = 𝑟 − 𝑟𝑥 − 𝑟𝑦) + 𝜇1𝑥 + 𝜇2𝑦 (4.8)

 𝑓𝑚𝑎𝑥 = 𝑟 + 𝑥(𝜇1 − 𝑟) + 𝑦(𝜇2 − 𝑟) (4.9)

Now that we have derived all of our formulas we know must

now solve for solve for the variables 𝜇𝐴, 𝜇𝐵, 𝜎𝐴 and 𝜎𝐵.

First, to calculate the forecasted expected returns we will use

Holts exponential smoothing which was covered in section11

𝐻𝑡+𝑚 = 𝐹𝑡+1 + 𝑚𝑇𝑡+1 (4.10)

Next, to forecast the derived asset’s volatilities 𝜎𝐴 and 𝜎𝐵 a

generalized conditional heteroscedasticity model is used. The

general formula for calculating the generalized conditional

heteroscedasticity model is seen in equations1:

𝜎𝑛
2 = 𝛾𝑉𝐿 + 𝛼𝛽𝜎𝑛−1

2 + 𝛽𝜎𝑛−1
2 (4.11)

For more information on the derivation process of the

generalized conditional heteroscedasticity model please refer

to section feature derivation methodology.

To better understand how portfolio optimization can be

utilized let us calculate the maximum capital allocation to

assets A and B. Given the risk-free rate is 0.01, Asset B has a

forecasted return 𝜇𝐵 = 0.05, volatility 𝜎𝐵 = 0.2 and asset A

has a forecasted return 𝜇𝐴 = 0.1, volatility 𝜎𝐴 = 0.4 with a

correlation to asset B 𝜌𝐴𝐵 = −0.5. The following graph can

be generated by solving the constraint problems. The solution

is provided via figure 4.1 below:

V. DELTA HEDGING

Delta Hedging Overview

One of the most interesting and effective ways to collect the

risk-free rate is through delta hedging. In order to better

understand the mechanisms behind delta hedging let us price

an option which has a payoff in (4.1):

 𝑃(𝑆) = max (0, 𝑆(1 − 𝑆)) (5.1)

Figure 3.2

Figure 4.1

Furthermore, the asset price derivative 𝑆 can be modeled by

the stochastic differential equation outline in (4.2) 12:

 𝑑𝑠 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑥 (5.2)

Let, 𝑑𝑋 is your probability component, and 𝑑𝑡 be the amount

of time it takes to update your portfolio12. To solve for the

partial differential equation and derive the option price

derivative 𝑑𝑉 to delta hedge the asset we use Ito’s lemma

(4.3)

 𝑑𝑉 = 𝑉𝑡𝑑𝑡 + 𝑉𝑠𝑑𝑆 +
1

2
𝑉𝑡𝑡(𝑑𝑡)2 +

1

2
𝑉𝑠𝑠(𝑑𝑆)2 (5.3)

Since, the 𝑑𝑡 is considerably we can simplify the equation by

assuming
1

2
𝑉𝑡𝑡(𝑑𝑡)2 converge to zero

1

2
𝑉𝑡𝑡(𝑑𝑡)2 → 0 (5.4)

Next, we can now substitute the stochastic differential

equation in (4.1) into Ito’s lemma to get (4.5) before it is

simplified our final result for 𝑑𝑉 (4.6) 12:

 𝑑𝑉 = 𝑉𝑡𝑑𝑡 + 𝑉𝑠(𝜇𝑆𝑑𝑡 + 𝜎𝑑𝑋) +
1

2
𝑉𝑠𝑠(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑋)2 (5.5)

 𝑑𝑉 = (𝑉𝑡 + 𝑉𝑠𝜇𝑆 + 𝑉𝑠𝑠
(𝜎𝑆)2

2
) 𝑑𝑡 + 𝑉𝑠 𝜎𝑑𝑋 (5.6)

Now that we have solved for 𝑑𝑉 and 𝑑𝑆 we can now utilize

delta hedging our asset by setting the change of portfolio dΠ

equal to the risk-free rate of return in equation (5.7).
 dΠ = V − Δ(dS) (5.7)

 dΠ = rΠdt = rV − rΔ(dS) (5.8)

Since the objective of delta hedging is to eliminate risk in the

market we set Δ equal to 𝑉𝑠 in equation (4.9) to minimize

risk12.

 Δ = 𝑉𝑠 (5.9)

Once we substitute in V, dS, & Δ into our portfolio hedging

strategy in equation (4.10) the algebra can be boiled down to

(4.11):

 dΠ = (𝑉𝑡 + 𝑉𝑠𝜇𝑆 + 𝑉𝑠𝑠
(𝜎𝑆)2

2
) 𝑑𝑡 + 𝑉𝑠 𝜎𝑑𝑋 − 𝑉𝑠(𝜇𝑆𝑑𝑡 + 𝜎𝑑𝑋) (5.10)

 dΠ = 𝑉𝑡 + 𝑉𝑠𝜇𝑆𝑑𝑡 − 𝑉𝑠𝜇𝑆𝑑𝑡 + 𝑉𝑠 𝜎𝑑𝑋 − 𝑉𝑠 𝜎𝑑𝑋 + 𝑉𝑠𝑠
(𝜎𝑆)2

2
𝑑𝑡 (4.11)

Lastly, it is clear to see we can now derive the solution by

setting the two portfolio hedging equations dΠ equal to each

other defined in (4.12):

𝑟𝑉 − 𝑟𝑉𝑠 = 𝑉𝑡 + 𝑉𝑠𝑠
(𝜎𝑆)2

2
𝑑𝑡 (5.12)

To model the partial differential equation several methods

including implicit, explicit and the Crank method are all

applicable12. Please note some methods handle boundary

conditions better but there are ways for manually adjusting

your matrices for an optimal solution. Form the derivation it

is clear to see that the risk-free rate of return can be derived

via a stochastic differential equation.

VI. BENCHMARK & PROCEDURE

Benchmark Overview

For the performance evaluation of an attribute based deep

learning neural network a benchmark will be utilized. of The

benchmark will be a standard network design, consisting of

an input layer hidden layer and output layer. The performance

evaluations will entail data training results such as overfitting,

and data correlation. Whereas the performance evaluations

will be derived from portfolio analysis12. The portfolios will

be derived from the hedging strategy discussed in section

portfolio optimization methods.

Portfolio performance will be based on the returns

generated by each portfolio. The portfolio will also have the

right to collect the risk-free rate of return on cash which has

not been invested into assets. For more information on

collecting the risk-free rate in the market please refer to

section Delta Hedging12. The section provides an in-depth

look into the partial differential equations which govern Delta

Hedging.

The trading will be conducted through the implementation

of a portfolio and fund class which has the right to buy and

sell shares of company stock. The buying and selling of

company shares will be dictated by a set of rules which

governs total capital allocation to the market, and how much

to invest in stocks. The capital allocation is determined by a

maximum portfolio risk tolerance 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 discussed in

section Portfolio Optimization Methods12. Second, several

Fundamental rules such as only invest in a company that has

positive future returns, and maximum percent portfolio

allocation threshold are defined in the trading algorithm. With

regards to the risk-free rate of return Delta Hedging company

returns will not be derived from shares of stock. Rather the

risk-free rate of return will be set arbitrarily to 0.02.

Lastly, a benchmark will be utilized in order to better judge

the performance of both the baseline and Attribute Network.

The benchmark we are using will be the S&P 500 Index

returns. The S&P Index is seen as a reputable leading

indicator for U.S. equities7. For the returns of the S&P 500

Index please refer to S&P Returns table below:

S&P RETURNS

Year
Quarterly Returns Returns

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total

2016
0.77 1.90 3.31 3.25 9.54

2015 0.44 -0.23 -6.94 6.45 -0.73

2014 1.30 4.69 .61 4.39 11.39

Calculation Overview

 Over 1.5 million raw data targets will be predicted from two

main components. The first component will be comprised of

features derived from daily stock market data. The daily stock

market data will consist of the high, low and closing price of

US Equities over the last decade. Second, an array of

company’s financial fundamentals which utilize regression

analysis. The financial fundamentals will consist of company

assets, liabilities, income, and debt.

Next, the universe will consist of all US Equities with a

midcap above twenty million dollars. The target output will

be the log return of the company’s shares which is then

converted into a price. For the sources of the raw data please

refer to section Model Overview: Source Outline.

VII. NETWORK RESULTS

Network Overview

Both the Attribute and Baseline networks were trained on

over 1.5 million targets. The performance factor was based on

a portfolio investment strategy. Both network portfolios

utilized the same hedging and optimization techniques. The

hedging strategy utilized macro and micro analysis of the data

returned by the network. The macro component determined

how much of your portfolio should be invested in assets and

what percentage of portfolio capital should collect the risk-

free rate of return. Please note portfolio capital was allocated

to the assets which intern was distributed among the

underlying assets.

Portfolio Performance Evaluation

The Attribute Network or Network I outperformed both the

baseline network and the benchmark S&P Returns as shown

table Network I returns:

NETWORK I RETURNS TABLE

Year
Quarterly Log Returns Returns

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total

2016
8.6508 5.2596 7.2597 13.6336 34.8037

2015 4.6540 3.7583 2.0595 3.6856 14.1574

 Conversely, the returns derived from the baseline network

significantly underperformed both Network I and the S&P

Returns. One of the main reasons for the low returns was the

limited allocation of funds to shares of the underlying assets.

Rather, the capital was invested in risk-free rate of return. In

the section Discussion we will give a more in-depth

explanation as to why the baseline portfolio underperformed

as it did.

BASE LINE NETWORK TABLE

Portfolio Optimization

The following portfolio optimization parameters were the

same for both the Attribute and Baseline Networks. The first

step in portfolio optimization is to determine the amount of

capital invested at the risk-free rate, and how much to invest

in the shares of the underlying assets. The capital allocation

was determined by a maximum risk tolerance 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

which was set to 0.1 in the portfolio management class. To

determine the macro-economic asset returns 𝜇 Holt’s

exponential smoothing was used. The hyper-parameters for

Holts exponential smoothing were a learning rate of 𝛼 = 0.45

and a discount factor of 𝛾 = 0.5. Lastly, the risk-free rate of

return was set to 𝑟 = 0.02 per year. For more information on

how Holt’s equation was utilized please refer to section

Feature Derivation and Methodology

Portfolio Optimization Methods.

Next, to forecast the macroeconomic portfolio volatility a

generalized conditional heteroscedasticity model was used.

The parameters of the model were set to, 𝛾 = 0.01, 𝛼 = 0.075,

and 𝛽 = 0.27. Lastly, the long term volatility 𝑉𝐿 was derived

from historical data where as 𝜇𝑛−1 used the predicted network

data which undergone further processing through Holts

equation. For more information on how the hyper-parameters

of the generalized conditional heteroscedasticity model were

calculated, please refer to section Portfolio Optimization

Methods.

Training Evaluation

The network training preformed significantly better than

the baseline network with absolutely no overfitting as seen in

figure 7.1. One of the most impressive performance

evaluation metrics Network I exceled at was the high

correlation of target to target prediction in the data. The

results of the training data can be seen in the table Training

Data:
TRANING DATA TABLE

Year
Quarterly Log Returns Returns

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total

2016
0.7412 0.6259 0.7639 0.7658 2.8401

2015 0.6256 0.5613 0.4071 0.7803 2.3743

 Correlation Value Percent

Type Network I Baseline Data Division

Training
0.9152 0.3113 0.8000

Validation 0.9059 0.3015 0.1000

Test 0.8957 0.3068 0.1000

Figure 7.1

Data Normalization

The following methods discussed in Data Normalization

will only apply to the Attribute Network. Various automated,

preprocessing, feature derivation and macro-analysis

techniques were applied to the dataset. Preprocessing

methods include standard scaling normalization methods

while the transformations methods used by the Sigmoid

Heaviside Laplacian transformation. The Heaviside function

was set to a 3 standard deviations and cap of 6 standard

deviations.

Micro Feature Derivation

The following methods discussed in Micro Feature

Derivation will only apply to the Attribute Network. For time

series feature derivation. Holt’s exponential smoothing with a

learning factor of 𝛼 = 0.5 and a discount factor of 𝛾 = 0.5.

Next, stochastics differential equations were another

Indicator. To calculate the asset forecasted returns 𝜇 of

company stock Holt’s exponential smoothing was used. The

hyper parameters for Holts exponential smoothing used a

learning factor of 𝛼 = 0.45 and a discount factor of 𝛾 = 0.5.

Next, to forecast a company asset’s volatility a generalized

conditional heteroscedasticity model was used. The

parameters of the model were set to, 𝛾 = 0.01, 𝛼 = 0.075, and

𝛽 = 0.27. For more information on the derivation of the

stochastic derivation and Holts equation please refer to

section feature derivation.

Macro Feature Derivation

The following methods discussed in Macro Feature

Derivation will only apply to the Attribute Network. Macro-

analysis analytics consisted of two stages and utilized several

statistical calculations. The statistical calculations included

variance, z-scores, and standard deviations to model

economic data of multiple companies on a specific day. To

relate the macro-economic data back to episode data two

indicators were used. The first, denoted as ∆ was the

difference between the episode value and the mean of the

sample data of all the episodes on a specific date. Second, was

the delta ∆ weighted by the standard deviation. After the

Macro features have been derived they underwent further

micro analysis. Since The high-dimensionality of the

compounded Macro-data via had to be Compressed.

The high-dimensional macro-data was compressed via both

factor analysis and principal component analysis through the

uses of Matlab built in statistics and machine learning

toolbox. A minimum covariance threshold for the loadings

was set to 0.65 such that any loading with a correlation less

than .65 would be rejected. Principal component analysis was

able to be used as well. However, factor analysis utilized a

variance maximization rotation. Therefore, since principal

component analysis is based on similar variance optimization

strategy it’s integration into data analysis was discouraged.

For more information on the data embedding strategy please

refer to the feature derivation section which discusses high-

dimensional data embedding strategies.

Architecture Design of Attribute Network

The Network architecture was created using the Network

Layer Architecture Class. The overall design utilized a total

of 45 inputs, which were imported into the network via a five

subsection feature convergence entry stage. Afterwards the

entry fed into a five sections build stage followed by a single

section convergence stage. Each layer had a maximum neuron

capacity of 283 with an 85 neuron coefficient factor per-input

as shown in the figure below:

 The network and its topology was designed utilized an array

of classes and toolboxes. Several of the classes and toolboxes

were specially developed for a universal interface between

network and user. While other classes and toolboxes were

provided by Matlab. For more information on which classes,

and toolboxes were utilized table please refer to table 5.1.

Note over seventy-five classes were developed in order to

make informed market prediction. Therefore, only the most

relevant classes and toolboxes will be discussed.

VIII. DISCUSSION

Small Step to Big Things

The beauty of attributes goes beyond a stunning network

architecture. Attributes open up a channel of communication

between user and network. Allowing human intuition to be

combined with network analytics in a way we are already are

familiar with. Whether we are sending an email to a friend or

buying items on line we are communicating with technology

to accomplish an end goal.

Through the use of communication between user and

network we are creating an environment which encapsulates

all of the complexities of behind building and training

networks. Allowing for feature to be derived to be derived

with ease and the integration of high-dimensional data in a

network to be even easier.

Experiment Discussion

When comparing the baseline network and Network I there

is no questioning what the power of an attribute based system

can do for you. Through predicting returns to a significantly

higher degree of accuracy Network I was able to be easily

embedded into complex hedging strategies to produce optimal

results, while balancing risk.

Conversely, the baseline network failed to produce reliable

results. The portfolio hedging strategy deemed the derived

assets to be volatile and unreliable. The high volatility and

unreliable returns increased the portfolio capital invested at

the risk-free rate of return rather than in the shares of the

underlying assets.

As for the training with regards to overfitting both the

Attribute based network and the baseline network performed

very well. However, if you look closely at the Network I

Training graph you will see that the results could have even

more optimal as the training curves had not fully converged.

The reason the Network’s I training was stopped early was

because it had been training for nearly six days and I needed

to preform portfolio analysis.

Lastly, the correlation between the target inputs and outputs

was significantly higher for Network I than the baseline

network. The reason for the change in correlation between the

target outputs and predicted target outputs was because of the

feature derivation, and the depth of the network. Network I

utilized an array of feature derivation techniques covered in

section Feature Derivation Methodology. Whereas the

baseline network utilized no feature derivation.

Portfolio Optimization Discussion

For future portfolio’s the optimization parameters could

undergo further optimization. The hedging strategy did not

allow for a significant amount of risk. As a result, both

Network I and especially the Baseline Network were

restrained to significant risk. One of the main motivations

behind reducing volatility was because volatile systems the

system needs to overcome a barrier of
2𝑥

3
 percent barrier of

non-log returns where x was the last percentage drop. Such

that if the returns are not long returns, and the shares follow

the pattern:

−3

6
,
1

2
,
−3

6
,
1

2
, … ,

−3

6
,
1

2
→ 0

−1

3
,
1

2
,
−1

3
,
1

2
, … ,

−1

3
,
1

2
→ 𝑥

the original investment will converge to zero. Furthermore,

where x is the original investment. Therefore, through the

following series it is evident the risk threshold should remain

low.

IX. CONCLUSION

In conclusion it is clear to see how an attribute based

network provides a new level of performance. When

compared to too a standard neural networks the attribute

based network dominated the performance evaluation of a

two-year portfolio by accumulating a total return of 63.9611

percent Vs. the standard network which only produced a

5.3500 percent return.

However, the attribute has a long way to go. Moving

forward furthering the development of new and improved

feature derivation techniques is critical to improving

performance. More so since the attribute technology has

embedded a network inside an environment when will the

network use features derived from another networks. Such

that the network itself become what the perceptron was to the

modern layer.

Next, how can you better combined classification and

regression to optimize the returns results. Where the ridged

structure which segregates classification from regression

becomes one in the same.

Finally, how can we create an easy to use interface to

analyze results and better communicate with data rather than

through a more interactive user interface. An interface which

has the ability to make new AI technology affordable and

accessible. By doing so we can replace operations research

with Machine learning an AI technology. Adding a degree of

value operations research could never provide by quantifying

type of qualitative data operations research never could.

X. RELATED WORKS

Related works consists of holts exponential smoothing

analysis which has already been discussed section feature

derivation here we will reflect on it. Holts exponential

smoothing is very interesting because it utilizes a discounting

factor. Second, for the Idea behind the implementation of

principal component analysis was provided to me by X.

Zhong, D. Enke. However, the paper he utilized a somewhat

of abutted approach when deriving his features through

principal component analysis. Next, one paper I did find very

interesting was Itamar Arel and Derek Rose and Robert Coop

on scalable deep learning networks. In many ways the

attribute system was inspired by their work but completely

different.

XI. THE MOTIVATION BEHIND THE PAPER

The driving force behind the neural network design

discussed in the paper is the concept of an abstract

relativistic systems. The Abstract system was Inspired by

the Lorentz transformation6. First introduced in Einstein’s

revolutionary December of 1916 publication, Relativity: The

Special and General Theory. Einstein described how the

Lorentz transformation6 utilized a co-ordinate system which

allowed the same event to be localized to two frames through

coordinate transformation. The result, distances and

velocities can be calculated from different frames of

reference even if an object is moving close to the speed of

light6. The main conceptual difference between the Lorentz

transformation6 and relativistic systems is the idea behind the

co-ordinate system. A Relativistic System utilizes the co-

ordinate system to quantify the energy potential between the

components of a system rather than a distance or velocity.

Therefore, to build a relativistic system you must derive

features from the energy discrepancies between a system’s

individual component’s frame of reference. The derivation

of the features will be discussed in section, Feature

Derivation.

A Tangible Example of a Relativistic System:

For a tangible example of a relativistic systems let us

analyze the socio interaction of person {P} in two scenarios

{A, B} where person {P} exists in two different friend

group’s {A, B} respectively. To make it fun you have the

right to buy or short ten percent of person {P} in the two

scenarios {A, B}.

In scenario {A}, person {P} exists in group {A}. Where a

completive academic drive to be the best and excel is at the

heart of the interdependent relationships that bind the group

together. Conversely, in scenario {B} person {P} exists in

group {B}, where individuals are driven to do the minimum

amount of work and still be able to do leisurely activities. As

a result of group dynamics it is highly probable person {P}

in scenario {A}, has a higher potential for growth relative to

his state in scenario {B}. Therefore, person {P} in scenario

{A} would be the optimal buy and person {P} in scenario

{B} would be the short.

When dealing with financial systems, the value of a

company with respect to its competition, acts in much way

the same way as the socio relations between individuals and

their friend group. To exploit the nature of relativistic

relationships in financial systems, a return on an investment

is driven by a company’s reversion to its mean relativistic

value. Relativistic value is the energy potential derived by a

components frame of reference relative to other components

in a system. Lastly, the value of a company can be broken

down into four main components, Macro Data, Micro Data,

Micro Relativistic Data and Macro Relativistic Data.

XII. DATA SOURCES

The Following section will provide tables which outline the

souses by which the data was collected. The majority of data

was provided through the Bloomberg terminal. Two tables

will provide information of company financials and

fundamentals. While the other will cover how the Macro-

Economic data was derived.

Company Financials

Type Source Time Period

Equity Bloomberg Quarterly

Liabilities Bloomberg Quarterly

Short Term

Debt

Bloomberg Quarterly

Long Term

Debt

Bloomberg Quarterly

Outstanding

Shares

Bloomberg Quarterly

Income Bloomberg Quarterly

Price to Book Bloomberg Quarterly

Close Price Bloomberg / Yahoo / Finviz Daily / Daily / Daily

High Price Bloomberg / Yahoo Daily / Daily

Low Price Bloomberg / Yahoo Daily / Daily

Macro-Economic Data

Type Source Time Period

US Debt Bloomberg Quarterly

Global Interest Rates Bloomberg Quarterly

Oil Production Bloomberg Quarterly

Relativistic

Macro Data

Relativistic

Micro Data
Micro Data

Macro Data Companies

Figure 11.1

XIII. CLASSES AND TOOLBOXES

The following section will provide a table outlining the

main classes and toolboxes which were used to make the

paper possible. Since over 65 personal classes were written

for the paper and several others were provided by Matlab. I

will only include the most critical classes.

REFERENCES

[1] Engle, Robert F. “Autoregressive Conditional Heteroscedasticity with

Estimates of the Variance of United Kingdom Inflation.”

Econometrica. Vol. 50, no. 4, 1982, pp. 987-1007

[2] Whittle, Peter, “Hypothesis Testing in Time Series Analysis”,

Almqvist & wiksells, 1951

[3] X. Zhong, D. Enke. “Forecasting daily stock market return

using dimensionality reduction”. Expert Systems with

Applications, 67 (2017), pp. 126–139

[4] Ray Dalio. “II. Debt Cycles.” Bridgewater Research Paper,

2015.

[5] Brandimarte, Paolo. “Numerical Methods in Finance and

Economics”, 2ed Edition. John Wiley & Sons, Inc. 2007.

[6] Einstein, Albert. “Relativity: The Special and General Theory”

Methuen & Co Ltd, December,1916

[7] Ira G. Kawaller, Paul D, Koch, and Timothy W. Koch. “The

Relationship between the S&P 500 Index and S&P 500 Index

Future Prices” Federal Reserve Bank of St. Louis. May 1988.

[8] Itamar Arel and Derek Rose and Robert Coop. “DeSTIN: A

Scalable Deep Learning Architecture with Applications to

High-Dimensional Robust Pattern Recognition.” The

University of Tennessee, Fall 2009.

[9] Hamdy, A. Taha. “Operations Research, an Introduction.”

Tenth Edition Boston Pearson 2017

[10] Sudman Seymour, Mary A. Spaeth. “The Collection and

Analysis of Economic and Consumer Behavior Data In

Memory of Robert Ferber.” Champaign, Illinois, 1984.

[11] Holt, Charles. “Forecasting Trends and Seasonal by

Exponentially Weighted Averages. Graduate School of

Business, University of Texas at Austin, Austin, TX, USA,

volume 20, Issue 1, January-March 2004, Pages 5-10”

[12] Paolo Brandimarte, “Numeric Methods in Finance and

Economics.” John and Wiley Sons, Inc. 2002, 2ed edition.

Class & Toolbox Outline Table 5.1

Type Name Source

Class Feature Derivation Alex Geiger

Class Network Fields Alex Geiger

Class Network Connector Alex Geiger

Class Attribute Alex Geiger

Class Network Layer Architecture Alex Geiger

Class Data Analysis Class Alex Geiger

Class Portfolio Management Alex Geiger

Class Fund Management Alex Geiger

Class Security Class Alex Geiger

Class Macro-economic Analysis Alex Geiger

Toolbox Logic Analysis Toolbox Alex Geiger

Toolbox Data Analysis Toolbox Alex Geiger

Toolbox Network Toolbox Alex Geiger

Class Network Matlab

Class Linear Model Class Matlab

Toolbox Neural Network Toolbox Matlab

Toolbox Statistics and Machine Learning Toolbox Matlab

Toolbox Financial Toolbox Matlab

Toolbox Econometrics Toolbox Matlab

