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Abstract— The following paper discusses the methodology 

behind modeling financial systems through deep learning neural 

networks. The goal, utilize deep learning to optimize portfolio 

returns by analyzing time series patterns. Concepts from prior 

works include advanced feature abstraction techniques such as 

factor analysis and Principal Component Analysis. New 

concepts introduced in the paper include network performance 

optimize strategies, an introduction to relativistic systems and a 

universal system for scalable deep learning neural network 

designs with built-in feature derivation. The primary application 

of the machine learning techniques covered in the following 

paper will utilize financial datasets provided by the Bloomberg 

terminal and various other reputable sources outlined in section 

model overview: source outline 

I. INTRODUCTION 

With the onset of affordable high-performance computing. 

neural networks provide the opportunity for financial firms to 

utilize information in a way they never thought possible. By 

combining human intuition with network analytics market 

analysis has made once qualitative analytics quantitative.  

 

In the following section, we will review the history of 

financial analysis and where it is headed. Prior to affordable 

high-performance computing. Financial analysis was divided 

into two categories, quantitative and qualitative analysis. 

Quantitative finance gained popularity with the onset of 

Operations Research.  

 

Operations Research was first introduced during World 

War II. Depending on the book you read the origins of 

Operations Research is often debated among scholars. 

Whether it be the British or American scientists one thing is 

clear its purpose was to assess the utilization of war materials 

based on science rather than wit9. After the war, Operations 

Researched gained popularity in the civilian sector by 

improving productivity and efficiency, adding a new 

dimension to global markets9. It wasn’t long before the 

finance industry caught on. 

 In 1951, Peter Whittle revolutionized financial modeling 

in his publication, Hypothesis Testing in Time Series 

Analysis2. In his paper, Whittle debuted the revolutionary 

concept of an autoregressive moving average. Setting in 

motion what was to be a new era of financial analysis2. Nearly 

three decades later Robert F. Engle1 took Peter Whittle’s idea 

to the next level. Engle, in his renowned Nobel Prize winning 

 
 

work, Autoregressive Conditional Heteroscedasticity with 

Estimates of the Variance of United Kingdom Inflation in 

1982 introduced Conditional Heteroscedasticity to the auto-

aggressive moving average1.  The result, financial market 

volatility could now model turbulent periods, followed by 

relatively calm periods1. However, Engle and Whittle’s work 

had one critical flaw they both utilized univariate analysis 

which could not encapsulate the abstract economic factor 

which governs financial markets. 

 

 It wasn’t until the advent of affordable high-performance 

computing; technology and human intuition could work 

together to quantify what qualitative analysis generalized. 

Recently, innovative machine learning techniques have 

brought financial modeling into a new era. Several of the most 

popularized techniques includes deep learning neural 

networks, support vector machines, quadratic discriminant 

analysis, and linear regression3. However, current machine 

learning techniques a dialog between user and network. To 

establish an effective channel of communication. 

 

The communication I am referring to is comparable to how 

we communicate with technology today. Whether we are 

sending emails or buying items online we are communicating 

with technology to attain an end goal. The Communication 

between user and network enables a user to inform the 

network, of the data you are giving it and how to handle it. 

Effectively simplifying incredibly complex tasks. 

 

For the remainder of the paper, the category of machine 

learning we will be covering is supervised learning.  

Supervised Learning consists of five main components: 

inputs, preprocessing, features, network designs, and output 

target prediction. 

II. NETWORK METHODOLOGY 

In the following section, we will introduce how to establish 

an effective channel of communication between user and 

network. The motivation, behind the implantation of dialog 

between user and network, is to reduce human error, better 

manage large network input data and optimization prediction 

performance. To begin, let us first analyze the general outline 

for feature abstraction. As shown in the diagram below we see 

features are derived from preprocessed raw data.  
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Feature Terminology: Attribute Introduction 

After the features have been derived they are sent to the neural 

network to predict a target output. The connection between 

features, layers and output predictions is critical to network 

design, development, and optimality. When dealing with 

high-dimensional datasets, allocating inputs to layers poses 

major challenges. To overcome this obstacle both feature’s 

and layers utilize attributes. An attribute is an organization 

system which enables the user to inform the network what the 

data is, how to handle the data, and where connections need 

to be made. 

 

  The result, an automated process for feature derivation, and 

network connections. Attributes are comprised of properties, 

which act as a labeling system allowing the network to 

interpret, process, and allocate data throughout the network. 

Effectively standardize input to layer, layer to layer, and layer 

to output connection through Attribute Logic. 

Attribute Logic allows individual network layers to accept 

or reject an input feature based on their specific attribute 

properties. The attribute properties of layers are inherited by 

a pre-defined logic based network topology.  Once a layer 

receives an input feature it assimilates to the attributes. 

Therefore, the layers develop attributes and are able to 

connect with other layers, as input features did with them.  

The result, a standardization of combining complex parallel 

and series substructures in the design of deep learning 

networks. Figure 2.1 demonstrates how attribute logic can be 

utilized for network design.  

Attribute Connection Outline 

The Attribute is composed of five main properties that govern 

Attribute Logic. They are defined as, Theme, Expression, 

Group, Trait, and Feature. For user-defined features, only 

two properties, group, and traits are utilized in network 

design. For simplicity let us cover the user-defined feature 

network attribute design process:   

 

 

 

 

The group determines the origin of raw data. Whereas the 

trait specifies how the data was derived. The shorthand 

notation for defining attributes of only one group and one trait 

is denoted as: 

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 → {𝐺𝑟𝑜𝑢𝑝, 𝑇𝑟𝑎𝑖𝑡} 

 

Likewise, the notation for defining attributes with multiple 

traits → 𝑇𝑟𝑎𝑖𝑡1, 𝑇𝑟𝑎𝑖𝑡2 is written as, 

 

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 → {𝐺𝑟𝑜𝑢𝑝, 𝑇𝑟𝑎𝑖𝑡1 𝑇𝑟𝑎𝑖𝑡2} 

 

Where a space separates 𝑇𝑟𝑎𝑖𝑡1 and 𝑇𝑟𝑎𝑖𝑡2. Figure 2.2 

demonstrates a simple example of how attribute logic can be 

utilized to govern the connections between the input to layer, 

layer to layer, and layer to output connections. 

 
 

Attribute & Feature Automation 

For complex networks which utilize automated feature 

derivation techniques, all attribute properties are used. 

Properties provide an effective means of data organization 

and communicating between the network and user. To better 

convey the development of the neural network design process 

let us think of it as an assembly line process where data is 

processed such that it can be fed into a network. The assembly 

line process is composed of three stages: General 

Preprocessing, Feature Derivation, and Architecture 

Design. 

 

The first stage General Preprocessing begins when key 

information is abstracted from the raw input data variable 

names. The abstracted information is then uploaded to the 

attribute properties. After the attributes have been processed 

normalization and transformation techniques preprocess the 

data to optimize network performance. 

 

Once the data has been pre-processed it is now ready to 

undergo Feature Derivation. Feature Derivation starts when 

the Macro analysis is applied to the various company 

episodes. The episodes separate the company’s financial data 

from one another allowing companies to be processed 

independently and as a group. One of the problems of macro 

analysis is the statistical calculations utilized in the process 

produces a large quantity of data. To overcome the problem 

high-dimensional data embedding is used to make the data’s 

dimensionality more manageable. Once the macro analysis 

has been applied, time series feature derivation techniques are 

utilized to analyze data. For a more in-depth look at the 

methodology of data pre-processing, feature extraction and 

high-dimensional data embedding please refer to the 

following section Feature Derivation and Methodology. 

 

Lastly, once the attributes have been defined, data has been 

pre-processed and features have been derived the architecture 

design process can now begin. The data is then fed into the 

network through attribute logic. Where the attributes define 

the connections between the input to layer, layer to layer, and 

layer to output connections. 
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Network Design Theory 

In ordinary networks, a network is comprised of three 

layers an input layer, a hidden layer, and an output layer. 

When dealing with high-dimensional data a single input layer 

can become problematic. In order to effectively handle high-

dimensional data, we discuss how the implementation of 

attribute logic based topology is implemented to optimize 

network performance.  

 

To do this deep learning neural network architecture is 

characterized by three stages which and two hierarchal 

structures. The hierarchal structures named section and 

subsection are the fundamental building blocks of the 

network design process. The largest of the bunch sections act 

as the fundamental building blocks of the stages. Sections are 

comprised of subsections which intern hold layers filled with 

neurons. The goal of using an intricate architecture is to 

parallelized high-dimensional data through attributes to 

govern data propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first stage, Entry, is a single and or multi-sectional 

layer where features and layers make contact. Stage two, 

Build, is multi-sectional, where layers form connections with 

other layers. Lastly, stage three, Target Convergence, is a 

single section comprised of one layer where all layers of the 

last section’s subsection converge to a single layer to predict 

a target output. The result, neurons are not subjected to high-

dimensional data limiting the risk of overfitting and 

increasing GPU memory. The outline of stage integration into 

network architecture is outlined in figure 2.4. 

Layer Analysis & Neuron Topology 

Now that we have effectively established the foundation of 

how attribute logic is utilized in network architecture. Let us 

now venture into the layer. A network layer is composed of 

two key elements Neurons and Attributes. 

 

 

 

 

 

 

 

Neuron connection and interaction with each other is critical 

to network optimality. Therefore, neuron topology is used to 

govern the connections between neurons. The main difference 

between neuron and layer topology is layer topology is 

organized. While the topology which governs how neurons 

connect with one another is random as seen in figure 2.6.  

Through the utilization of neuron topology and attributes, 

it is now possible to, optimize the utilization of neurons and 

automate preprocessing such that deep learning networks can 

be built from intricate architecture designs like never before. 

Through the introduction of layer based topology, we are now 

able to plug high-dimensional data into a network with ease. 

One of the biggest motivation for the utilization of automating 

network connections is to allow for automation of feature 

derivation and integration. 

III. FEATURE DERIVATION METHODOLOGY 

Feature derivation and macro analysis techniques. To do 

this attributes act as the foundation for an interactive network 

environment. Allowing user intuition to be combined with 

robust advanced analytics providing a quantitative depth to 

the user’s qualitative intuition. The structure for the 

automated process is as follows: 

 
4 

 

 

After raw data is imported into the network environment 

several Preprocessing techniques are to the data such as 

transformations and normalization method were used. 

Transformation Normalization 

 For the transformation methods, a Sigmoid Heaviside 

Laplacian transformation was utilized to filter outliers. The 

transformation was comprised of three parts and used the 

mean and standard deviation of the data. The first stage 

utilized a 1-1 ratio until it passed a number of standard 

deviations away from the mean, at which point it would jump 

to stage two or three. Stage two and three utilized a sigmoid 

function that would act as threshold such that the function 

would never pass a specified number of standard deviations. 
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Micro Time Series Analysis 

The micro analysis utilizes the preprocessed raw data to 

derive features. The most popular features include simple 

exponential smoothing, Holt’s exponential smoothing, the 

generalized conditional heteroscedasticity model, stochastic 

differential equations and other numerical methods such as 

derivatives. In order to better understand the methods 

discussed above let us analyze the equations and their 

implementation.  

 

First, exponential smoothing is one of the most common 

methods utilized in financial forecasting. Equation 3.2 gives 

us the simple exponential smoothing forecasting equation12:  

 

𝐹𝑡 = 𝛼(1 − 𝐹𝑡)           (3.1) 

𝐹𝑡+1 = 𝛼𝐴𝑡 + (1 − 𝛼)𝐹𝑡              (3.2) 

Where 𝐹𝑡+1 represents the forecasted expected returns of an 

asset, and 𝛼 is the smoothing parameter or learning factor. 

With regards to the learning factor 𝛼 in simple exponential 

smoothing. We see the Q-Learning algorithm in equation 3.3 

is very similar to simple exponential smoothing. However, in 

Q-learning, the equation is based on  a set of states 𝑠 and a set 

of actions 𝑎. 

      𝑄(𝑠, 𝑎) ← (1 − 𝛼)𝑄(𝑠, 𝑎) +  𝛼[𝑠𝑎𝑚𝑝𝑙𝑒]        (3.3) 

Holt took simple exponential smoothing to the next level 

when he modified it such that it could better handle trends. 

equations 3.3 - 3.5 give us the Holts exponential smoothing 

and forecasting equations11: 

 

                      𝐹𝑡+1 = 𝛼𝐴𝑡 + (1 − 𝛼)(𝐹𝑡 + 𝑇𝑡)             (3.3) 

       𝑇𝑡+1 = 𝛾(𝐹𝑡+1 − 𝐹𝑡) + (1 −  𝛾)𝑇𝑡 ,   𝑇0 = 0       (3.4) 

𝐻𝑡+𝑚 =  𝐹𝑡+1 + 𝑚𝑇𝑡+1        (3.5) 

Let 𝐹𝑡+1 be the Level equation, T be the trend equation and 

𝐻𝑡+𝑚 be the forecasting equation. Furthermore, let  𝛾 be the  

smoothing factor or discount factor and 𝛼 be the smoothing 

parameter of the Level equation 𝑇 or the learning factor11. 

Please note Holts original publication in 1957 used different 

equation notation. The notation has been translated to be more 

modern11. 

 

One of the biggest applications of the generalized 

conditional heteroscedasticity model is assets volatility 

prediction. Equation 3.6 gives us the Hull representation of 

the generalized conditional heteroscedasticity model: 

 

𝜎𝑛
2 = 𝛾𝑉𝐿 + 𝛼𝜇𝑛−1

2 + 𝛽𝜎𝑛−1
2          (3.6) 

 

Let 𝛾 be your weighting factor to your long-term volatility 𝑉𝐿,  

𝛼 be your weighting factor to your returns 𝜇, and 𝛽 be your 

weighting factor on your variance. Lastly, 𝜎𝑛 is the volatility 

in the market derived from the generalized conditional 

heteroscedasticity model. 

 

The last micro time series indicator we will be covering is the 

stochastic differential equation. The stochastic differential 

equation encapsulates the Holt exponential moving average 

and the generalized conditional heteroscedasticity model. 

Equation 3.6 gives us the stochastic equation defined as12: 

 

                               𝑑𝑠 =  𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝑥         (3.6) 

Let 𝑆 be the price of the asset, 𝜇 be the drift coefficient defined 

by the forecasted returns of asset S, 𝜎 be the diffusion 

coefficient current volatility. Next, 𝑑𝑡 is defined as your time 

differential and 𝑑𝑥 is defined as the stochastic probability 

differential. 

 

Macro Analysis 

 Another key component to the feature derivation process 

is Macro-analysis analytics. Macro-analysis utilizes several 

different feature derivations techniques before undergoing the 

micro analysis discussed above. These methods include 

calculating z-scores, standard deviations and variance and 

other statistical factor to help analyze economic data.  Macro-

economic data has extracted been extracted across multiple 

episodes. The data will then be compressed further via high-

dimensional data embedding techniques.  

 

High-Dimensional Data Embedding 

 The main method of high-dimensional data embedding 

consists of factor analysis and principal component analysis.  

In figure 3.2 factor analysis is utilized to embed indicator1 five 

dimensions of data in a two-dimensional surface. How it 

works is by calculating the maximum likelihood estimate of 

the factor loadings. The equation for factor analysis is stated 

in equation 3.7: 

 

𝑥 =  𝜇 +  Λ𝑓 + 𝑒       (3.7) 

 

Let 𝑥 be a vector of observed variables, 𝜇 be a constant 

vector of means, Λ be a matrix of factor loadings and 𝑒 be a 

vector of specific independent factors. In order to ensure the 

data embedding provided by the factor analysis is reliable. 

Algorithms analyze the covariance matrix of that observed 

data 𝑥. Equation 4.8 is used to calculate the covariance of  𝑥. 

 

 𝑐𝑜𝑣(𝑥) = ΛΛ𝑇 +  𝑐𝑜𝑣(𝑒)          (3.8) 

 

When using factor analysis, one of the most critical elements 

to is understanding is the difference between rotated and 

unrotated data. Unrotated applies equal weights on all of your 

variable components. Conversely, the weights of the variable 

loadings can differ in rotated factor analysis.  An example of 

rotated factor analysis is represented in figure 3.2. 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. PORTFOLIO OPTIMIZATION METHODS 

The portfolio optimizing strategy utilizes a portfolio of two 

assets and cash. The assets are derived from stocks by using 

an inverse correlation coefficient maximization function. 

Such that given assets 𝐴 and 𝐵: 

𝑓𝑚𝑎𝑥 = −
𝑐𝑜𝑣(𝐴,𝐵)

𝜎𝐴𝜎𝑩
          (4.0) 

 One the assets have been derived the next step is deciding on 

how much is to be invested at the risk-free rate given when 

given a maximum portfolio risk tolerance 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜.12 To 

solve for the risk tolerance, we will utilize the risk tolerance 

equation: 

 

 (𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜)
2

=  𝑎1𝑥2 + 𝑎2𝑥𝑦 + 𝑎3𝑦2    (4.1) 

 

Where the x and y represent the percentage of portfolio capital 

allocated to the assets12. The three coefficients 𝑎1, 𝑎2 and 𝑎3 

are defined by: 

 

𝑎1 = (𝜎𝐴) 2      (4.2) 

𝑎2 = 2𝜌𝐴𝐵𝜎𝐴𝜎𝐵     (4.3) 

𝑎3 = (𝜎𝐵)2      (4.4) 

Let  𝜇𝐴 be Assets A’s forecasted return, 𝜎𝐴 be A’s the 

forecasted variance, 𝜇𝐵 be B’s forecasted return, 𝜎𝐵 be B’s 

forecasted variance and 𝜌𝐴𝐵 be the correlation between assets 

A and B. In order to solve for the portfolio capital allocation 

of the assets. A maximization function is utilized to forecast 

asset returns the portfolio12. We also introduce a new variable 

𝑧 which represents the capital invested at the risk-free rate of 

return.  

𝑓𝑚𝑎𝑥 = 𝑟𝑧 + 𝜇1𝑥 + 𝜇2𝑦      (4.5) 

1 = 𝑧 + 𝑥 + 𝑦        (4.6) 

Combining the constraint equation, and the maximization 

equation we are able to produce the following equation 

which must be maximized12. 

𝑓𝑚𝑎𝑥 = 𝑟(1 − 𝑥 − 𝑦) + 𝜇1𝑥 + 𝜇2𝑦     (4.7) 

𝑓𝑚𝑎𝑥 = 𝑟 − 𝑟𝑥 − 𝑟𝑦) + 𝜇1𝑥 + 𝜇2𝑦     (4.8) 

 𝑓𝑚𝑎𝑥 = 𝑟 + 𝑥(𝜇1 − 𝑟) + 𝑦(𝜇2 − 𝑟)     (4.9) 

 

Now that we have derived all of our formulas we know must 

now solve for solve for the variables 𝜇𝐴, 𝜇𝐵, 𝜎𝐴 and 𝜎𝐵. 

First, to calculate the forecasted expected returns we will use 

Holts exponential smoothing which was covered in section11  

 

𝐻𝑡+𝑚 =  𝐹𝑡+1 + 𝑚𝑇𝑡+1        (4.10) 

Next, to forecast the derived asset’s volatilities 𝜎𝐴 and 𝜎𝐵 a 

generalized conditional heteroscedasticity model is used. The 

general formula for calculating the generalized conditional 

heteroscedasticity model is seen in equations1: 

 

𝜎𝑛
2 = 𝛾𝑉𝐿 + 𝛼𝛽𝜎𝑛−1

2 + 𝛽𝜎𝑛−1
2       (4.11) 

  

For more information on the derivation process of the 

generalized conditional heteroscedasticity model please refer 

to section feature derivation methodology. 

 

To better understand how portfolio optimization can be 

utilized let us calculate the maximum capital allocation to 

assets A and B. Given the risk-free rate is 0.01, Asset B has a 

forecasted return 𝜇𝐵 = 0.05, volatility 𝜎𝐵 = 0.2 and asset A 

has a forecasted return 𝜇𝐴 = 0.1, volatility 𝜎𝐴 = 0.4 with a 

correlation to asset B 𝜌𝐴𝐵 = −0.5. The following graph can 

be generated by solving the constraint problems. The solution 

is provided via figure 4.1 below: 

 

 

 

 

 

 

 

 

 

 

 

 

V. DELTA HEDGING 

Delta Hedging Overview 

One of the most interesting and effective ways to collect the 

risk-free rate is through delta hedging. In order to better 

understand the mechanisms behind delta hedging let us price 

an option which has a payoff in (4.1): 

 
                                         𝑃(𝑆) = max (0, 𝑆(1 − 𝑆))                         (5.1) 

 

Figure 3.2 

Figure 4.1 



  

Furthermore, the asset price derivative 𝑆 can be modeled by 

the stochastic differential equation outline in (4.2) 12: 

 
                                       𝑑𝑠 =  𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝑥                     (5.2) 
 

Let, 𝑑𝑋 is your probability component, and 𝑑𝑡 be the amount 

of time it takes to update your portfolio12. To solve for the 

partial differential equation and derive the option price 

derivative 𝑑𝑉 to delta hedge the asset we use Ito’s lemma 

(4.3) 

 

                𝑑𝑉 = 𝑉𝑡𝑑𝑡 + 𝑉𝑠𝑑𝑆 +  
1

2
𝑉𝑡𝑡(𝑑𝑡)2 +  

1

2
𝑉𝑠𝑠(𝑑𝑆)2           (5.3) 

Since, the 𝑑𝑡 is considerably we can simplify the equation by 

assuming 
1

2
𝑉𝑡𝑡(𝑑𝑡)2 converge to zero  

                                                       
1

2
𝑉𝑡𝑡(𝑑𝑡)2 → 0                            (5.4) 

Next, we can now substitute the stochastic differential 

equation in (4.1) into Ito’s lemma to get (4.5) before it is 

simplified our final result for 𝑑𝑉 (4.6) 12: 
 

     𝑑𝑉 = 𝑉𝑡𝑑𝑡 + 𝑉𝑠(𝜇𝑆𝑑𝑡 + 𝜎𝑑𝑋) +  
1

2
𝑉𝑠𝑠(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑋)2      (5.5) 

                  𝑑𝑉 = (𝑉𝑡 + 𝑉𝑠𝜇𝑆 +  𝑉𝑠𝑠
(𝜎𝑆)2

2
) 𝑑𝑡 + 𝑉𝑠 𝜎𝑑𝑋             (5.6) 

 

Now that we have solved for 𝑑𝑉 and 𝑑𝑆  we can now utilize 

delta hedging our asset by setting the change of portfolio dΠ 

equal to the risk-free rate of return in equation (5.7). 
      dΠ = V − Δ(dS)                     (5.7) 

                                     dΠ = rΠdt = rV − rΔ(dS)                    (5.8) 

Since the objective of delta hedging is to eliminate risk in the 

market we set Δ equal to 𝑉𝑠 in equation (4.9) to minimize 

risk12. 
 

                                                         Δ =  𝑉𝑠                                (5.9) 

 

Once we substitute in V, dS, & Δ into our portfolio hedging 

strategy in equation (4.10) the algebra can be boiled down to 

(4.11): 

     dΠ = (𝑉𝑡 +  𝑉𝑠𝜇𝑆 +  𝑉𝑠𝑠
(𝜎𝑆)2

2
) 𝑑𝑡 + 𝑉𝑠 𝜎𝑑𝑋 −  𝑉𝑠(𝜇𝑆𝑑𝑡 + 𝜎𝑑𝑋)    (5.10)                                     

     dΠ = 𝑉𝑡 +  𝑉𝑠𝜇𝑆𝑑𝑡 −  𝑉𝑠𝜇𝑆𝑑𝑡 + 𝑉𝑠 𝜎𝑑𝑋 −  𝑉𝑠 𝜎𝑑𝑋 + 𝑉𝑠𝑠
(𝜎𝑆)2

2
𝑑𝑡   (4.11) 

Lastly, it is clear to see we can now derive the solution by 

setting the two portfolio hedging equations   dΠ equal to each 

other defined in (4.12): 

𝑟𝑉 − 𝑟𝑉𝑠 = 𝑉𝑡 + 𝑉𝑠𝑠
(𝜎𝑆)2

2
𝑑𝑡          (5.12) 

To model the partial differential equation several methods 

including implicit, explicit and the Crank method are all 

applicable12.  Please note some methods handle boundary 

conditions better but there are ways for manually adjusting 

your matrices for an optimal solution.  Form the derivation it 

is clear to see that the risk-free rate of return can be derived 

via a stochastic differential equation. 

 

VI. BENCHMARK & PROCEDURE 

Benchmark Overview 

For the performance evaluation of an attribute based deep 

learning neural network a benchmark will be utilized. of The 

benchmark will be a standard network design, consisting of 

an input layer hidden layer and output layer. The performance 

evaluations will entail data training results such as overfitting, 

and data correlation. Whereas the performance evaluations 

will be derived from portfolio analysis12. The portfolios will 

be derived from the hedging strategy discussed in section 

portfolio optimization methods.  

 

Portfolio performance will be based on the returns 

generated by each portfolio. The portfolio will also have the 

right to collect the risk-free rate of return on cash which has 

not been invested into assets. For more information on 

collecting the risk-free rate in the market please refer to 

section Delta Hedging12. The section provides an in-depth 

look into the partial differential equations which govern Delta 

Hedging. 

  

The trading will be conducted through the implementation 

of a portfolio and fund class which has the right to buy and 

sell shares of company stock. The buying and selling of 

company shares will be dictated by a set of rules which 

governs total capital allocation to the market, and how much 

to invest in stocks. The capital allocation is determined by a 

maximum portfolio risk tolerance 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 discussed in 

section Portfolio Optimization Methods12. Second, several 

Fundamental rules such as only invest in a company that has 

positive future returns, and maximum percent portfolio 

allocation threshold are defined in the trading algorithm. With 

regards to the risk-free rate of return Delta Hedging company 

returns will not be derived from shares of stock. Rather the 

risk-free rate of return will be set arbitrarily to 0.02.  

 

Lastly, a benchmark will be utilized in order to better judge 

the performance of both the baseline and Attribute Network. 

The benchmark we are using will be the S&P 500 Index 

returns. The S&P Index is seen as a reputable leading 

indicator for U.S. equities7. For the returns of the S&P 500 

Index please refer to S&P Returns table below: 

S&P RETURNS 

Year 
Quarterly Returns Returns 

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total 

2016 
0.77 1.90 3.31 3.25 9.54 

2015 0.44 -0.23 -6.94 6.45 -0.73 

2014 1.30 4.69 .61 4.39 11.39 

 

Calculation Overview 

 Over 1.5 million raw data targets will be predicted from two 

main components. The first component will be comprised of 

features derived from daily stock market data. The daily stock 

market data will consist of the high, low and closing price of 

US Equities over the last decade. Second, an array of 



  

company’s financial fundamentals which utilize regression 

analysis. The financial fundamentals will consist of company 

assets, liabilities, income, and debt.  

 

Next, the universe will consist of all US Equities with a 

midcap above twenty million dollars. The target output will 

be the log return of the company’s shares which is then 

converted into a price. For the sources of the raw data please 

refer to section Model Overview: Source Outline. 

VII. NETWORK RESULTS 

Network Overview 

Both the Attribute and Baseline networks were trained on 

over 1.5 million targets. The performance factor was based on  

a portfolio investment strategy. Both network portfolios 

utilized the same hedging and optimization techniques. The 

hedging strategy utilized macro and micro analysis of the data 

returned by the network. The macro component determined 

how much of your portfolio should be invested in assets and 

what percentage of portfolio capital should collect the risk-

free rate of return. Please note portfolio capital was allocated 

to the assets which intern was distributed among the 

underlying assets.  

 

Portfolio Performance Evaluation 

The Attribute Network or Network I outperformed both the 

baseline network and the benchmark S&P Returns as shown 

table Network I returns: 

NETWORK I RETURNS TABLE 

Year 
Quarterly Log Returns Returns 

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total 

2016 
8.6508 5.2596 7.2597 13.6336 34.8037 

2015 4.6540 3.7583 2.0595 3.6856 14.1574 

  

 Conversely, the returns derived from the baseline network 

significantly underperformed both Network I and the S&P 

Returns. One of the main reasons for the low returns was the 

limited allocation of funds to shares of the underlying assets. 

Rather, the capital was invested in risk-free rate of return. In 

the section Discussion we will give a more in-depth 

explanation as to why the baseline portfolio underperformed 

as it did.  

BASE LINE NETWORK TABLE 

 

Portfolio Optimization 

The following portfolio optimization parameters were the 

same for both the Attribute and Baseline Networks. The first 

step in portfolio optimization is to determine the amount of 

capital invested at the risk-free rate, and how much to invest 

in the shares of the underlying assets. The capital allocation 

was determined by a maximum risk tolerance 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 

which was set to 0.1 in the portfolio management class. To 

determine the macro-economic asset returns 𝜇 Holt’s 

exponential smoothing was used. The hyper-parameters for 

Holts exponential smoothing were a learning rate of 𝛼 = 0.45 

and a discount factor of 𝛾 = 0.5. Lastly, the risk-free rate of 

return was set to 𝑟 = 0.02 per year. For more information on 

how Holt’s equation was utilized please refer to section 

Feature Derivation and Methodology  

 

Portfolio Optimization Methods. 

Next, to forecast the macroeconomic portfolio volatility a 

generalized conditional heteroscedasticity model was used. 

The parameters of the model were set to, 𝛾 = 0.01, 𝛼 = 0.075, 

and 𝛽 = 0.27. Lastly, the long term volatility 𝑉𝐿 was derived 

from historical data where as 𝜇𝑛−1 used the predicted network 

data which undergone further processing through Holts 

equation. For more information on how the hyper-parameters 

of the generalized conditional heteroscedasticity model were 

calculated, please refer to section Portfolio Optimization 

Methods.  

Training Evaluation 

The network training preformed significantly better than 

the baseline network with absolutely no overfitting as seen in 

figure 7.1. One of the most impressive performance 

evaluation metrics Network I exceled at was the high 

correlation of target to target prediction in the data. The 

results of the training data can be seen in the table Training 

Data: 
TRANING DATA TABLE 

 

 
 

Year 
Quarterly Log Returns Returns 

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total 

2016 
0.7412 0.6259 0.7639 0.7658 2.8401 

2015 0.6256 0.5613 0.4071 0.7803 2.3743 

 Correlation Value Percent 

Type Network I Baseline Data Division 

Training 
0.9152 0.3113 0.8000 

Validation 0.9059 0.3015 0.1000 

Test 0.8957 0.3068 0.1000 

Figure 7.1 



  

Data Normalization 

The following methods discussed in Data Normalization 

will only apply to the Attribute Network. Various automated, 

preprocessing, feature derivation and macro-analysis 

techniques were applied to the dataset. Preprocessing 

methods include standard scaling normalization methods 

while the transformations methods used by the Sigmoid 

Heaviside Laplacian transformation. The Heaviside function 

was set to a 3 standard deviations and cap of 6 standard 

deviations.  

 

Micro Feature Derivation 

The following methods discussed in Micro Feature 

Derivation will only apply to the Attribute Network. For time 

series feature derivation. Holt’s exponential smoothing with a 

learning factor of 𝛼 = 0.5 and a discount factor of 𝛾 = 0.5. 

Next, stochastics differential equations were another 

Indicator. To calculate the asset forecasted returns 𝜇 of 

company stock Holt’s exponential smoothing was used. The 

hyper parameters for Holts exponential smoothing used a 

learning factor of 𝛼 = 0.45 and a discount factor of 𝛾 = 0.5. 

Next, to forecast a company asset’s volatility a generalized 

conditional heteroscedasticity model was used. The 

parameters of the model were set to, 𝛾 = 0.01, 𝛼 = 0.075, and 

𝛽 = 0.27. For more information on the derivation of the 

stochastic derivation and Holts equation please refer to 

section feature derivation. 

 

Macro Feature Derivation 

The following methods discussed in Macro Feature 

Derivation will only apply to the Attribute Network. Macro-

analysis analytics consisted of two stages and utilized several 

statistical calculations. The statistical calculations included 

variance, z-scores, and standard deviations to model 

economic data of multiple companies on a specific day. To 

relate the macro-economic data back to episode data two 

indicators were used. The first, denoted as ∆ was the 

difference between the episode value and the mean of the 

sample data of all the episodes on a specific date. Second, was 

the delta  ∆ weighted by the standard deviation. After the 

Macro features have been derived they underwent further 

micro analysis. Since The high-dimensionality of the 

compounded Macro-data via had to be Compressed. 

 

The high-dimensional macro-data was compressed via both 

factor analysis and principal component analysis through the 

uses of Matlab built in statistics and machine learning 

toolbox. A minimum covariance threshold for the loadings 

was set to 0.65 such that any loading with a correlation less 

than .65 would be rejected. Principal component analysis was 

able to be used as well. However, factor analysis utilized a 

variance maximization rotation. Therefore, since principal 

component analysis is based on similar variance optimization 

strategy it’s integration into data analysis was discouraged. 

For more information on the data embedding strategy please 

refer to the feature derivation section which discusses high-

dimensional data embedding strategies. 

 

Architecture Design of Attribute Network 

The Network architecture was created using the Network 

Layer Architecture Class. The overall design utilized a total 

of 45 inputs, which were imported into the network via a five 

subsection feature convergence entry stage. Afterwards the 

entry fed into a five sections build stage followed by a single 

section convergence stage. Each layer had a maximum neuron 

capacity of 283 with an 85 neuron coefficient factor per-input 

as shown in the figure below: 

   The network and its topology was designed utilized an array 

of classes and toolboxes. Several of the classes and toolboxes 

were specially developed for a universal interface between 

network and user. While other classes and toolboxes were 

provided by Matlab. For more information on which classes, 

and toolboxes were utilized table please refer to table 5.1. 

Note over seventy-five classes were developed in order to 

make informed market prediction. Therefore, only the most 

relevant classes and toolboxes will be discussed. 

VIII. DISCUSSION 

Small Step to Big Things 

The beauty of attributes goes beyond a stunning network 

architecture. Attributes open up a channel of communication 

between user and network. Allowing human intuition to be 

combined with network analytics in a way we are already are 

familiar with. Whether we are sending an email to a friend or 

buying items on line we are communicating with technology 

to accomplish an end goal. 

 

Through the use of communication between user and 

network we are creating an environment which encapsulates 

all of the complexities of behind building and training 

networks. Allowing for feature to be derived to be derived 

with ease and the integration of high-dimensional data in a 

network to be even easier. 



  

Experiment Discussion 

When comparing the baseline network and Network I there 

is no questioning what the power of an attribute based system 

can do for you. Through predicting returns to a significantly 

higher degree of accuracy Network I was able to be easily 

embedded into complex hedging strategies to produce optimal 

results, while balancing risk.  

 

Conversely, the baseline network failed to produce reliable 

results. The portfolio hedging strategy deemed the derived 

assets to be volatile and unreliable. The high volatility and 

unreliable returns increased the portfolio capital invested at 

the risk-free rate of return rather than in the shares of the 

underlying assets. 

 

As for the training with regards to overfitting both the 

Attribute based network and the baseline network performed 

very well. However, if you look closely at the Network I 

Training graph you will see that the results could have even 

more optimal as the training curves had not fully converged. 

The reason the Network’s I training was stopped early was 

because it had been training for nearly six days and I needed 

to preform portfolio analysis.  

 

Lastly, the correlation between the target inputs and outputs 

was significantly higher for Network I than the baseline 

network. The reason for the change in correlation between the 

target outputs and predicted target outputs was because of the 

feature derivation, and the depth of the network. Network I 

utilized an array of feature derivation techniques covered in 

section Feature Derivation Methodology. Whereas the 

baseline network utilized no feature derivation. 

 

Portfolio Optimization Discussion 

For future portfolio’s the optimization parameters could 

undergo further optimization. The hedging strategy did not 

allow for a significant amount of risk. As a result, both 

Network I and especially the Baseline Network were 

restrained to significant risk. One of the main motivations 

behind reducing volatility was because volatile systems the 

system needs to overcome a barrier of  
2𝑥

3
 percent barrier of 

non-log returns where x was the last percentage drop. Such 

that if the returns are not long returns, and the shares follow 

the pattern: 

 
−3

6
,
1

2
,
−3

6
,
1

2
, … ,

−3

6
,
1

2
→ 0 

−1

3
,
1

2
,
−1

3
,
1

2
, … ,

−1

3
,
1

2
→ 𝑥 

 

the original investment will converge to zero. Furthermore, 

where x is the original investment. Therefore, through the 

following series it is evident the risk threshold should remain 

low. 

 

IX. CONCLUSION 

In conclusion it is clear to see how an attribute based 

network provides a new level of performance. When 

compared to too a standard neural networks the attribute 

based network dominated the performance evaluation of a 

two-year portfolio by accumulating a total return of 63.9611 

percent Vs. the standard network which only produced a 

5.3500 percent return.  

 

However, the attribute has a long way to go. Moving 

forward furthering the development of new and improved 

feature derivation techniques is critical to improving 

performance. More so since the attribute technology has 

embedded a network inside an environment when will the 

network use features derived from another networks. Such 

that the network itself become what the perceptron was to the 

modern layer. 

 

Next, how can you better combined classification and 

regression to optimize the returns results. Where the ridged 

structure which segregates classification from regression 

becomes one in the same. 

 

Finally, how can we create an easy to use interface to 

analyze results and better communicate with data rather than 

through a more interactive user interface. An interface which 

has the ability to make new AI technology affordable and 

accessible. By doing so we can replace operations research 

with Machine learning an AI technology. Adding a degree of 

value operations research could never provide by quantifying 

type of qualitative data operations research never could. 

  

X. RELATED WORKS 

Related works consists of holts exponential smoothing 

analysis which has already been discussed section feature 

derivation here we will reflect on it. Holts exponential 

smoothing is very interesting because it utilizes a discounting 

factor. Second, for the Idea behind the implementation of 

principal component analysis was provided to me by X. 

Zhong, D. Enke. However, the paper he utilized a somewhat 

of abutted approach when deriving his features through 

principal component analysis. Next, one paper I did find very 

interesting was Itamar Arel and Derek Rose and Robert Coop 

on scalable deep learning networks. In many ways the 

attribute system was inspired by their work but completely 

different. 

 

XI. THE MOTIVATION BEHIND THE PAPER 

The driving force behind the neural network design 

discussed in the paper is the concept of an abstract 

relativistic systems. The Abstract system was Inspired by 

the Lorentz transformation6. First introduced in Einstein’s 

revolutionary December of 1916 publication, Relativity: The 

Special and General Theory. Einstein described how the 

Lorentz transformation6 utilized a co-ordinate system which 

allowed the same event to be localized to two frames through 



  

coordinate transformation. The result, distances and 

velocities can be calculated from different frames of 

reference even if an object is moving close to the speed of 

light6. The main conceptual difference between the Lorentz 

transformation6 and relativistic systems is the idea behind the 

co-ordinate system. A Relativistic System utilizes the co-

ordinate system to quantify the energy potential between the 

components of a system rather than a distance or velocity. 

Therefore, to build a relativistic system you must derive 

features from the energy discrepancies between a system’s 

individual component’s frame of reference. The derivation 

of the features will be discussed in section, Feature 

Derivation. 

A Tangible Example of a Relativistic System: 

For a tangible example of a relativistic systems let us 

analyze the socio interaction of person {P} in two scenarios 

{A, B} where person {P} exists in two different friend 

group’s {A, B} respectively. To make it fun you have the 

right to buy or short ten percent of person {P} in the two 

scenarios {A, B}. 

  

In scenario {A}, person {P} exists in group {A}. Where a 

completive academic drive to be the best and excel is at the 

heart of the interdependent relationships that bind the group 

together. Conversely, in scenario {B} person {P} exists in 

group {B}, where individuals are driven to do the minimum 

amount of work and still be able to do leisurely activities. As 

a result of group dynamics it is highly probable person {P} 

in scenario {A}, has a higher potential for growth relative to 

his state in scenario {B}. Therefore, person {P} in scenario 

{A} would be the optimal buy and person {P} in scenario 

{B} would be the short.  

 

When dealing with financial systems, the value of a 

company with respect to its competition, acts in much way 

the same way as the socio relations between individuals and 

their friend group. To exploit the nature of relativistic 

relationships in financial systems, a return on an investment 

is driven by a company’s reversion to its mean relativistic 

value. Relativistic value is the energy potential derived by a 

components frame of reference relative to other components 

in a system. Lastly, the value of a company can be broken 

down into four main components, Macro Data, Micro Data, 

Micro Relativistic Data and Macro Relativistic Data. 

 

 

 

 

 

 

 

 

 

 

 

XII. DATA SOURCES 

The Following section will provide tables which outline the 

souses by which the data was collected. The majority of data 

was provided through the Bloomberg terminal. Two tables 

will provide information of company financials and 

fundamentals. While the other will cover how the Macro-

Economic data was derived. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Company Financials 

Type Source Time Period 

Equity Bloomberg Quarterly 

Liabilities Bloomberg Quarterly 

Short Term 

Debt 

Bloomberg Quarterly 

Long Term 

Debt 

Bloomberg Quarterly 

Outstanding 

Shares 

Bloomberg Quarterly 

Income Bloomberg Quarterly 

Price to Book Bloomberg Quarterly 

Close Price Bloomberg / Yahoo / Finviz  Daily / Daily / Daily 

High Price Bloomberg / Yahoo Daily / Daily 

Low Price Bloomberg / Yahoo Daily / Daily 

Macro-Economic Data 

Type Source Time Period 

US Debt Bloomberg Quarterly 

Global Interest Rates Bloomberg Quarterly 

Oil Production Bloomberg Quarterly 

Relativistic 

Macro Data 

Relativistic 

Micro Data 
Micro Data 

Macro Data Companies 

Figure 11.1 



  

XIII. CLASSES AND TOOLBOXES 

The following section will provide a table outlining the 

main classes and toolboxes which were used to make the 

paper possible. Since over 65 personal classes were written 

for the paper and several others were provided by Matlab. I 

will only include the most critical classes. 
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Class & Toolbox Outline Table 5.1 

Type Name Source 

Class Feature Derivation Alex Geiger 

Class Network Fields Alex Geiger 

Class Network Connector Alex Geiger 

Class Attribute Alex Geiger 

Class Network Layer Architecture Alex Geiger 

Class Data Analysis Class Alex Geiger 

Class Portfolio Management Alex Geiger 

Class Fund Management Alex Geiger 

Class Security Class Alex Geiger 

Class Macro-economic Analysis Alex Geiger 

Toolbox Logic Analysis Toolbox Alex Geiger 

Toolbox Data Analysis Toolbox Alex Geiger 

Toolbox Network Toolbox Alex Geiger 

Class Network Matlab 

Class Linear Model Class Matlab 

Toolbox Neural Network Toolbox Matlab 

Toolbox Statistics and Machine Learning Toolbox Matlab 

Toolbox Financial Toolbox Matlab 

Toolbox Econometrics Toolbox Matlab 


